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ABSTRACT

Several miscellaneous results are given in the theory of digital codes and finite

state machines. Of particular interest in either case is the problem of ergodicity, i. e.

whether a machine (which may be a decoder) can be reset to the correct state with the

proper input sequence and with no knowledge of the present states or outputs. Some

of the results given are algebraic methods and other tools useful in examining ergodicity

and related problems. Consideration is also given to the synthesis of sequential machines

to economically solve tasks which are essentially non-sequential.
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Purpose

The present contract has as its aim a study of certain properties of digital codes

used for communication. both in general and as applied to Signal Corps porblems. Some

consideration is also given to finite state machines since they are necessary for encod-

ing and decoding operations, and since they are analyzed by essentially the same mathe-

matical tools.

Factual Data

As in the previous report, the work to be reported here will be grouped under three

general headings:

1. Synthesis of coding and other digital apparatus

2. Further results on the symbol string algebra

3. Topics concerning digital codes.
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1. 1 Turing Machines as Stored Program Computers It is desired to study very simple

stored program computers because these represent economical ways to synthesize dig-

ital transducers. A storage element is usually cheaper than a logic element (diode etc.),

especially if the latter must be individually wired. Of course, a stored program com-

puter has the additional advantage that it can be programmed to perform a different task,

but if the stored program transducer is cheap enough it can be economically used for a

specific application. Instances already exist where people have purchased general pur-

pose computers to accomplish specific tasks rather than design an(' built their own appa;r-

atus. A method for analyzing and synthesizing computers was given in the last report(]).

The basic form was shown in Fig. 9(1), and the timing cycles are shown in Table i(1).

The purpose here is to throw as much of the burden of computation as is possible on the

memory unit. A considerable effort has been expended by various workers in trying to

simplify the universal Turing machine, and the resulting designs can be useful as boundary

conditions on practical transducers. These Turing machine designs are attempts to re-

duce the product of member of "tape symbols" and "head states", this product being

suggested by Shannon(2) as a suitable measure of complexity. How is the product of

tape symbols and head states related to questions of machine operations vs. programmed

operations, optimum word length, etc. ?

A computer will now be described which resembles a Turing machine except that

a finite tape will be assumed. The timing table and block diagram are shown in Fig. 1. 1.

At time 1 the tape is read and the main calculation is made: the new head state z, the

next tape symbol to be printed r, and the tape displacement d are calculated as functions

of the old head state x and the tape symbol at a, t(a). At time 2 the new symbol s is

printed at position a on the tape and the present tape position is shifted to register I.

At time 3 the new head state z is put in the head store X; and the new tape position g is

calculated from the old position 'a" and the displacement d, thus shifting the tape. The

shift in a real Turing machine is either 1 right or I left (address increased or decreased

by 1); but here, since the tape is finite, more general shifts could be allowed, even to

any postiion on the tape (i. e. any address). In a theoretical Turing machine some of the

details given in Fig. 1. 1 are of no interest, i. e. the clock, the temporary storage, the

tape position register and tape shifter. Some of these could be eliminated by postulating

sultable delays, eg. if the Operation Table has a delayed output the tape could be read

and written one in one part of the cycle. Most Turing machine theory, being concerned

with computability and not practical machine design, concentrates on the number of head

states n and the number of tape symbols m. As shown in Fig. 1. 1, the Head State regis-

ter will have log2 n bits of storage capacity (and that many pairs in the horizontal bus

leaving it), and the tape output vertical bus will have log2 m pairs. The Operation
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Table thus has log, mn pairs (Boolean variables and their complements) entering it, not

counting I cy which is merely a timing pulse from the clock. The Operation Table, if

written out explicitly, would have mn entries, each specifying 1 + log, mn bits. Using

Shannon' s method for constructing 2 state or 2 symbol Turing machines (Z), and starting

from Minsky' s machine(4) of 6 symbols and 7 states, the following possibilities exist:

m symbols n states

2 174

6 7

175 2

These effectively specify the number of Boolean variables entering the Operation Table

as between 6 and 9 binary digits. Some thoughts on the design of such multiple output

combinational circuits were given in Section 1. 2 of the previous report(1). The parameter

log2 m in a Turing machine corresponds to word length in a computer. The parameter

n in a Turing machine does not correspond to a single parameter in a computer, but it

does represent the number of operations and the accumulator size together.

Some interesting comparison can now be drawn between the Turing machine of

Fig. 1. 1 and the computer of Fig. 9(l). Words in a single address computer can be

broadly divided into three types: operation-data address, operation-instruction address

(umps), and data words (numbers etc. ). Instructions are sometimes broken down into

more than two fields, eg. operation-index register-address; and the operation sometimes

spills over into the address field, eg. in shift instructions. The address may be absolute

(directly referring to any part of the memory) or relative (specifying the memory location

by its distance from the present instruction). The cemputer may have many more oper-

ations than the operation field indicates, since some can be performed by subroutines.

In the extreme case of a Turing machine, the word (tape symbol) cannot be broken down

into separate fields at all, and the address is so a realtive" that only the previous or

next locations can be addressed. It is desired to study devices halfway between a Tur-

ing machine and a single address computer.

The relationship of a Turing machine to various types of digital computer is shown

the hierarchy of Table 1. 1. The 1, 2, 3, and 4 addressmachines select their instructions

from successive storage locations (except for possible jumps to any part of storage) and

their data from arbitrary storage locations given by the address part of the instruction

word. The 1 + 1 address machine jumps to an arbitrary location for the next instruction

after every step, but this seems to be of no great advantage except where a cyclic stor-

age medium is used(4). Now it is quite possible to imagine a single address machine to

be modified so that the data is part of the instruction word rather than merely the
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address of the data 41 . If the same datumenters several instructions this might prove

inconvenient , but it is conceivable that the data would be shorter than the address

(obviously true for an infinite tape storage), This suggests the I 0-address' computer.

A ' partial address" is possible as an intermediate step between full address and no a

address; eg. in the basic CDC 160(5) has 8192 storage locations and a 6 bit address, rel-

ative addresses being used for most operations. Carried to an extreme,the relative

address becomes the left or right shift of the Turing machine tape. Specifications for

computers mentioned were obtained from references 4 to 8.

An interesting pcssibility is suggested by Table 1. 2 in the box labeled I Step Dat.k'.

This would be the opposite of a 1-address machine. A 1-address machine steps through

the instructions while pulling data from various locations specified by the address. A

' Step Data' computer would step through the data while pulling instruction from various

locations specified by the addresses.

1. 2 Basic computer relationships It is desired here to study the relationships between

the parameters of a general purpose stored program computer in the same way that

Turing machine theory has done for that type. Some of the parameters that should be

related are memory size, word size, combinational circuit size, operation time etc.

Suppose a computer has a storage unit S consisting of M binary storage elements. Let

P, X, and Y be three subsets of S, where P and X are disjoint. Let Pt and -t be vectors

with binary components representing the contents of the respective memory subsets at

time t (t = 0, 1, 2... ). The problem which the computer is to solve is to make Yra

function f of x . Note that x and y may have many components and y may represent the

solution to a differential equation, i. e ' function' is used generally.

Definition: The program in P calculate f in time T and places the answer in Y pro-

vided that

(1) y.T = f(xo) for all possible x 0

(2) The result (1) is achieved regardless of the initial states of

the elements of S not in P U X.

(3) If the initial value of any single element of P is changed result

(1) is not achieved. (This insures that every part of P is necessary at least if the program

is to work for all x. )

(4) For no t less than -r are the above true.

If there are n components in x then there 2. n distinct single variable Boolean functions

which can be formed from the components of x. This means that there must be at least
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2 (2 n) distinct sottings of subsets of the M memory elements. Thus

2 (,n)< 1+M2 + (M)22 +(M)23+... +()2M ,(l +)M

2 < M log2 3

If y has r components, there are r2n distinct functions, giving

rZn < Mlog2 33 (1.1)

The largest memory in use seems to be that of the IBM Stretch computer(8), about
16 800 000 bits. If r = n, this limits n to about 20 bits, certainly much smaller than

the input data to most problems. The conclusion is that no computer is a general pur-

pose* is the strict sense.

Nothing has been said so far about the form of the program p. As is evident from

Section 1. 1 above, there are a great number of ways in which instruction words can be

formed, and a general theory should not put too many restrictions on the way the stor-

age in broken down into words. Note that if part of the program contains the truth table

of f, that part alone requires r2n storage elements. Thus, Eq. 1. 1 is a little optimistic

in assuming all subset settings are useful programs, but the difference in calculating n

is very small. As was suggested in the previous report(), the program is essentially

as complicated as its simplest description (the truth table). This follows when it is

realized that the table lookup program could hardly be comparable in size to the com-

plete table of r2n entries. It appears that no more useful bound than Eq. 1. 1 will be

found unless the type of problem (Boolean function) is suitably restricted. This same

question was raised by Shannon in connection with relay contact networks . His con-

clusion seems to be that since it requires an enormous number of contacts to realize a

randomly selected function of a moderate number of input variables, and since networks

have been made with a large number of input variables, that the functions of common

interest must be of some special type. The ideas of Shannon on functional separability,

group invariance, and symetrical functions seem as appropriate to the computers as to

switching networks, the action and complexity of switching networks and computer pro-

grams being so similar.

It is not so surprising that even the largest computers cannot calculate an arbitrary

function of 20 binary variables when the size simplest description of such a function is
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examined. There are 2(z20) V 2(106) such functions, so the description requires 106

bits. This is about 200, 000 English letters, about 3000 lines of type, or about 66 pages
of print! This would be 66 pages of compact mathematical description, a description in

English would be much longer.

A rough indication of how time of computation might enter the theory can be pro-

vided if two additional assumptions are made:

(5) The value of x is indepe-dent of time during one problem.

(6) The time of execution -r is the same for all problems f.

Now not only must all initial programs -o be distinct, but so must all intermediate states

of the initial program region. This leads to

rzn+ log2 v < M log 2 3 (1.2)

For a given r and n the computation time T cannot be made too large without requiring

larger M. This seems contrary to the notion that a sequential computer gains economy

by using its parts over and over. However, the bound is obtained for arbitrary functions,

for separable or symmetric functions(9)the result might be quite different and long ex-

ecution times might be indicated. Note that a single table-lookup does not result in a

very large value for log 2 T.

It is intriguing to consider a computer whose only basic operations are n Sheffer

stroke" and 'Jumpw. If y is to be a general function of x, it is only necessary to con-

sider r separate scalar functions yi of x. Each of these can be expressed in normal form

as a logical sum of logical products (of the variables and their negatives). Each product

of n terms can be obtained by successively multiplying just 2 terms, and similary for

sums. But each of the 3 Boolean operations (sum, product, negate) can be expressed

in terms of the single binary operation Sheffer stroke XI Y (either not X or not y)(10, 11).

The stroke operation would suffice not only in handling the data x but also in bookeeping

operations as the program itself is modified then po, pa ... p " For ordinary computer

programs the expression of all operations (say addition of two 10 digit numbers) in terms

of the stroke function would result in a great increase in complexity. However, if sub-

routines and symbolic programming are used, the program writing task might not be too

bad. The control and 'arithmetic unit" parts of the computer would be very simple, as

in a Turing machine. The problem remains, however, that if nothing is done to limit

the type of function which the computer is to handle any interchange between control and

I arithmetic unit' complexity and storage capacity will be masked by the si-e of the

truth table.
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1. 3 Tabulation of form state binary machines In a previous report( ), a tabulation of

these state binary machines was made, and this has proved very useful in giving exam-.-

pies of machin.s with certain combinations of properties (eg. non-rosettable, non-peri-

odic and simple). An n state binary machine will be defined hers as a collection of n

states with a 0 arrow and a 1 arrow leaving each state and ending In a statepossibly the

same state. The machine is to be strongly connected, is. every state must be reached

from every other state.

Consider the graph shown in Fig. 1. 2a. This is topologically the same as that
shown in Fig. 1. 2b. Also, for the purposes of this enumeration, Fig. 1. 2c Is considered

the equivalent of the other two. It is desired to tabulate only topologically distinct graph%

so that different orientations, reflections, notations etc. do not yield new cases; and if

all the labels on the arrows are simultaneously changed, the resultant graph is not con-

sidered distinct. The big problems in making such a tabulation are to include all possible

graphs and not to include two equivalent graphs. The method adopted is to start with a

simplified graph, and then to add details in such a way that each graph can be formed in

one and only one way. As shown in Fig. 1. 3, the graph of Fig. 1. 2a is the fifth version,

the steps in adding loops, adding multiple connections, adding directions to the connec-

tions and finally, labeling the arrows. The number of four state diagrams found at each

step (counting only those leading to possible find graphs meeting the required conditions),

are 5, 24, 108, as shown in Fig. 1. 3, and there are 460 graphs in the final tabulation.

There are actually six graphs of the type shown in Fig. 1. 3a, but one (F) does not lead

to any (binary) graphs meeting the conditions. The number of distinct graphs of each

type are shown in Fig. 1. 4. As an example of how the classification is carried out,

Fig. 1. 5 shows the variants of D. Consider D3 , there are already 8 transitions so that

no double connections can be added. The arrows can only be drawn in two ways shown

in Fig. 1. 6a and b. Now the first arrow can be labeled either I or 1, so label the diagonal

arrow In all cases 0. This immediately requires one other arrow to be labeled 1 in each

graph. Fig. L 6a has no symmetrics, so that the remaining 3 arrows (3 being always

oppositely labeled) can be labeled in 8 different ways. On the otherhand, it does not

matter in Fig, 1. 6b whether the lower left state is labeled

or 
ý
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because of symmetry, therefore only 4 graphs result from Fig. 1. 6b. The 108 label-

less directed graphs such as in Fig. 1. 6a, b can all be labeled in 8, 6, 4, 3, 2, 1 ways

according to the types and numbers of symmetries they possess.

Four states can be represented by the settings -of a pair of flip-flops, so that there

are 460 ways to feed a single binary input to a pair of flip-flops; each resulting in a

different behavior pattern, but each allowing every state to be reached from every other.

If this pair of flip-flops is to be connected into a layer network interchanging the O's and

IIs at the input and relabeling the states can result in different behavior of the larger net-

work, and if these changes are considered to give distinct machines the total number

possible will be somewhere between 460 and 2 x 4 1. x 460 types. Although symmetries

will keep the number considerably below the upper bound, the number of ways of connect-

ing just two flip-flops is remarkably large.

The tabulation of the 460 graphs was done some time ago but was never published

because it was not sufficiently checked. Recently this number has been checked by a

thesis student, Mr. Donald Chin. A tabulation of the 460 types will be prepared as a

separate report.

2. 1 Semigroups without the descending chain conditions In dealing with the semigroup

corresponding to symbol concatenation in languages, it is usually assumed that the semi-

group is free (no relations between the generators), or that it satisfies the descending

chain condition (any sequence of strings obtained by cancelling symbols from beginning

or end must terminate). These conditions are equivalent and they imply a unique factor-

ization of any string into symbols. In dealing with compound code the seniigroup symbols

are matrices, the descending chain condition does not hold, and the factorization is not
(13)unique. In the Third Semi-annual report , the descending chain condition was replaced

by Postulate 14), that every element have some finite factorization. It is desired here

to study the structure of semigroups having neither Postulate 14(13) nor the descending

chain condition, but which nevertheless allow certain canonical factorizations.

Consider a set of elements S with a closed binary operation (indicated by juxtapos-

ition) obeying the postulates P 1 to P 6 below.

PI: For every x, y, and z in S, x(y-) = (xy)z. A zero will be difined as an element

o which obeys Bxn x: = O for all xin S.

P 2: For every x, y, and z in S, xy = xx implies y = z, provided that xy V 9. Simi-

larly yx a zx implies y = z, provided that yx 0 B.

P3: For every w, r, y, and z in S, wxi= yz ( 0 implies that either a u exists in S,
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such that wu = y, or that a v exists in S such that w = yv. The dual statement can

be taken as a postulate or proved from the other postulates.

P4: Each elem,-nt has a right and left unit, possibly depending on the element.

That is, for each x in S there exists some u in S such that xu = x and some v in S such
that vx n x. An element e, not equal to 0, will be difined as idempotent if ee • e. The
following lemmas will be useful in proving the main theorems:

L 1: The zero, if it exists, is unique. Suppose 81 is a unit. Then 01x x 0 for all
x, including any other unit 02. But if 02 is a unit 0102 = 02. Therefore 01 a 82.

L 2: Similarly, there is no element w(1 B) such that wx = 8 for all x in S. By .P4,

there exists a u such that wu = w, but multiplication is unique. Note that there may be
divisors of zero, ie. pairs of elements x, y such that xy = 0.

L 3: For any particular element x in S, the right unit is unique and the left unit is

unique. Proved by P2.

L 4: Every idempotent is the unit of some non-zero element; and every unit of a
non-zero element is idempotent. For every idempotent e is the unit of itself (ee = e);
and if u is a unit of x( 0) it follows that x = xu = xuu, therefore u = uu by P 2.

L 5: The product of two distinct idempotents is zero. For ee 2 a ele 2 e2 implies
either ee 2 = 0, or by P2, elW e 1 2 . But e1 e1 el, therefore ela e2 by L 3.

L 6: The set of elements eS, where e is an idempotent of sen-igroup S, is a non-
empty subsemigroup of S. It is non-empty since S contains the right unit of e and eS

then containts at least e. Let es, and ex 2 be two elements of eS, then (esl) (es 2 ) =

e(sles 2 ) E eS.

L 7: Let e, and e 2 be two distinct idempotents of S, then elS and e2S have no
common elements except 0. Suppose elx.= e 2 yjO where zandy are elements of S. By

P 3 either there exists a u inS such that elu• e2 , or a v in S such that e lu W e 2, or
a v in S such that eI = e2 v. In the former case, multiply both sides by el: elu a ee 2

0 (by LS), then e2 y = 0 contradictingithe original hypothesis. A similar argument applies
to the second possibility.

L 8: Every element of S is in one of the subsemigroups eiS. Consider any element
x of S. Its left unit is an idempotent by L 4. If ej is the left unit of x, then eax a x and

x must be in siS. Lemmas 6 to 8 apply dually to the subsemigroups Se.

L 9: The class elSej is a subsemigroup and it is disjoint with ekSeh unless I k
and J a h. Every element of S is in one of esSe. Also eiSej (i V J) is a null senmigroup,
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ie. al products are 0. Proof similar to above.

The lemmas presented above show that S can be expanded into disjoint semigroups
in several ways:

S s eiS (right ideals) (2. 1)
i

S • , Sej (left ideals) (2.2)

S elSe (2.3)
i, j

These are analogous to expanding a group into comets. An expansion into two sided ideals
can be obtained by applying Eq. 2. 1 to S = SS:

Sa. SeiS (2.4)
i

Now, in order to prevent the semigroup from consisting of many subsemigroups entirely

disconnected with each other, assume:

P 5: For every eL and e there exists elements *ij' 4j, of S such that

ei a +ij ej +ji
Theorem 1 The following expansion of the semigroup S holds:

-S -: k S (for any k) (.5)
ij (.5

where Skk = ekSek

*ii ei

This theorem is easily proved using p 5 and Eq. 2. 3. It follows that every element a

in S has an expansion

"a = *kkk s kJ (2.6)

where there are several choices for skk but where i and j are uniquely determined. The

subsemigroups +ik Skk +4 are isomorphic for different k, i and J fixedi and are dis-

joint, Finally:

P 6 The subsemigroup SU - el - 0 is freely generated by Xl' g2 ... gn" It follows
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now that any element of S can be expanded uniquely according to Eq. Z. 6 as

where gh= g'1 g2  '" n and .1 is the 'lengths (possibly 0) of a.

Theorem 2: In S there are only 5 types of elements:

1) the zero0

2) the idempotents ei

3) the i V J)

4) the generators gl, g2 "gn

5) composite elements as in Eq. 2. 7.

The abstract formulation given above can be clarified by noting that 8 is a matrix

of empty sets; the elements +ij consist of a matrix with a null string in the I' th row and

j'thcolumn and the other elements empty sets; ei = +ii that is a null string on the diagonal;
the generator gi consist of a single letter in the first row, first column and empty sets

elsewhere; and composite elements have a single string in one position of the matrix and

empty sets elsewhere. The whole semigroup S is the set of union-irredicible elements

The abstract formulation is given in an attempt to obtain a mathematical system which is

neither too specific nor too general, and therefore to obtain a one-to-one correspondence

between coding theorems and algebraic theorems. By this means it is hoped to extend

theorems about simple codes to compound codes, as was done for the Sardinas-Patterson

algorithm(14 ).

2. 2 Further results in the code string algebra The code string algebra which was

developed in previous reports (13 deals with matrices of sets of symbol strings, allowing

the null string +. Let * be any binary closed operation which distributes over addition

+ (set union, position by position in the matrix). If G Q H is defined to mean that there

exists a (possible empty) matrix X such that G + X - H, then

G Q H implies P*G*Q q P*H*Q (2.8)

because P*G*Q+ Y P*H *QwhereY aP*X*Q. Here *might standfor ' (con-

tatenation or multiplication), or \, or / (divisions). Similar reasoning show that

G QH and IQJ implies G*I H*3 (2.9)

The relation between * and intersection can now be established: First note that since

G nHrG, by Eq. 2.9it follows thatP * (GAH)*Q1 P*G * G. Next note thatA B

and AQCimplies AQB nC. Set An P*(GnfH)*Q, B- P*G*Q, andC= P*H*Q
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and it follows that

P* (GnH)*Q c(P*G*Q) n (PI*H*Q) (2.10)

again where * represents either concatentation or division. Of course, one aided rela-
tions can be obtained from all of the above equations by setting either P or Q equal to a

diagonal matrix of null strings.

In ordinary matrit theory (elements of the matrix in a commutative ring), the law
(AB)' = BI A' holds, where prime indicated the transpose. This is not true in the code
string algebra since the semigroup of element multiplication is not commutative. If
T (eJ) a matrix with one null string in every row and one null string in every column,
and if* is a matrix with a null string in every position on the main digonal, then

T T' = T T = T (2.11)

TI T2 C J if TI e J and T2 t J (2.12)

These follow from the fact that the T matrices represent permutations. Now it follows
that

A = T X TO

B TXTO implies AB=T X Y T' (2.13)B * T Y T' J

A w T X TO implies An= T Xn T' (2.14)

A matrix A will be defined as automorphic if A = T A TO with T 9( . Any power of an
automorphic matric is automorphic by eq. 2. 14.
2. 3 Resettability of finite state machines In another report (12)there have been tabu-

lated the state diagrams with 1, 2 and 3 states such that exactly two arrows (labeled 0
and 1, the machine inputs) leave each state and such that every state can be reached
from every other state. Only topologically distinct graphs are shown, ie. graphs ob-
tained by interchanging the labels on all arrows simultaneously, or by premuting the
states, or both are not shown. Under the restrictions it was found that there is I graph
of I state, that there are 4 graphs of 2 states, and 29 graphs of 3 states . The graphs
have been classified according to 3 properties (simple or compound, resettable or not,
bounded delay or not) thus producing 8 categories. It is necessary to go to 4 state graph%
in order to give examples in 2 of these categories, this is done on the next page of the

report(12). A graph is resettable if and only if a reset signal exists; a reset signal is a
sequence of 0' an" 11 s which will put the machine in a single definite state no matter
"Some errors have been found in this tabulation: graphs 14, 15 and 32 have 2 components
and not 31 graph 5 has the lower left arrow in the wrong direction.
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what the starting state in. The concept of resettability is quite similar to the concept

of ergodicity in physics; if a resettable machine is fed with a random input sequence of

O's and 1's the effect of the starting state on the probability of the present state grad-

ually I wears off$ as the length of the input sequence increases. It is desired to obtain

necessary and sufficient conditions for a machine to be resettable. As a first step, the

reasons why 12 of the 36 machines in the old report(12) are not resettable will be ex-

amined. The string set matrix (1 4 ) of the machines under consideration will have a single

O and a single 1 in every row, and will have no null strings. Here the strings represent

inputs, there is a single 0 in each row because the machine must know how to change

state and can only go to one state, and there are no null strings since they would repre-

sent spontaneous state changes. Consider various powers of the matrices of 2 states:

00

M - M2 000 01 00

11 10

00 01

MM
2 

110 11

1]" LI_2'00 0110 11

000
00 001
01 010

01 10
4i 2 11 3 MI1

00 2 0 000
01 001
10 010
11.

-• 111

001 000
00 011.

00 01 100 101
11 2 11

[1 ol [11 10 ill 110
, V28 2 M8' ' 28

0 1 L 01 00 000 001
S10 11 011 010

101 100
110 111
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The codes M18 and M 2 1 are resettable, but M 2 4 and M 2 8 are not. The n'th power of

the code matrix shows the final state (column) as a function of the initial state (row)

and the input signal of n symbols. The code is resettable if and only if one signal appears

in every row of some column (possibly accompanied by other signlas) in some power of

the matrix. If such a signal does appear every row of some column of the n ' th power.

there will then be a signal appearing in every row of some column of the n' th power

where n > no. In fact, once one column has such a reset signal in it, all columns can

be made to contain resets by increasing n. The smallest n0 for which resets appears

gives the length of the shortest reset signal, no u 1 in the above exarmples. A few more

examples will be given:

00 000 000
01 001 001
10

0 1 11 111 111

000
001

0 00 01 ...
I1M 2r 10 11 M 111125 M 2  - - 25=

0 00 01 000
1 10 11 001

111

This is a periodic machine, and hence not resettable. Note that the disjoint patterns of

empty positions periodically repeat themselves so that no column can ever have a mem-

ber in every row.

00
F 01
0 1 10 U

L 0 M2 00 01

00 01
M11= 10 ,1101

L 1J L10 00 11

Here n 0 2 and U is the reset, appearing first in the third column.

It is desired to find general algebraic conditions for resettability. In the following,

4will be used to denote the class of single column matrices, and C will always mean

some member of that classeg. [h j I The machine M is evidently resettable if an4

only if there enists an na 1 , 2... < o andaC c tsuch that

C Q Mn (2.15)
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where inclusion and matrix multiplication are defined as in previous reports•4). Some

conditions on M which present M from being resettable can now be established. Accord-

ing to Section 2. 2 above if M is automorphic, is.

M= T M T'

then Mn will be automorphic and

C Q T Mn T'

Now by Eq. 2. 8 above,

T C T' Q T Mn T'

But T C TO has the same string as C but in a different column, and therefore both can-
not be in the same matrix if the matrix represents a determinate machine. An automor-

phic matrix corresponds to a machine with a proper automorphism, that is the machine

looks the same a permutation of the states. If the state diagram looks the same after

permuting the states, any reset signal would have the same effect on the graph as on the

permuted graph. The existence of automorphisms is then the same as the existence of

certain types of symmetry in the state diagram.

Certain other cases of non-resettability can be recognized. A state diagram is

defined as periodic if the greatest common division of the path lengths which start at a

fixed state and return to that state is greater than unity. If this g. c. d. is equal to p,

then the graph has a period p and the states can be divided into p classes K1, K2 ... Kp
such that either a 0 or a I causes a transition from Ki to _Ki(orfromKto K1). This

is shown in the analysis of Markov precesses, eg. Feller(15 ), page 330. A periodic

machine arises if a uniform code is decoded, and this is one of the classes of non-ergodic
(16)codes given by Schitzenberger

The next class of non-resettable graphs arises from the fact that it is necessary

to have at least one state with two or more 0 arrows entering, or at least one state with

two or more I arrows entering. If no such state exists, then the last digit of the reset
signal cannot bring together the final ambiguous class of states. But if no state with at

least two similarly labeled arrows entering it exists, then every state must have just

two arrows entering it, a 0 arrow and a 1 arrow. This is true because the total number
of arrows is equal to twice the number of states, and a single arrow entering one state

implies three or more entering another. The particular type of state diagram considered

here might then represent a binary determinate machine if all arrows are reversed in

direction. Since it makes sense going backward, such a graph will be called a palindrome.

Note that it may or may not represent exactly the same machine if the arrows are
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reversed; numbers 29 and 32 in Fig. 30(12) do represent the same machine. The idea

of readinj backward occurs in a palindrome and in the anagrammtic codes of Schfitzer-

berger but the decoder of a simple code with the prefix property cannot be a palin-

drome since all words end in the base state. It is easy to see why a palindrome cannot

satisfy Eq. 2. 15 above. In a palindrome a 0 input permutes the state, and so does a 1

input. Th refore, the M matrix is merely the sum of two T-type matrices (single ele-

ment in each row and column), one for 0 and one for 1. Any power of M will be a sum

of T-type matrices:

M= To+ T1

M T2 o T0T T0 T 1 + T1T 0 + T1T1

Since each input string appears in only one terms of this sum, there cannot be a column

of identical strings.

The third class of non-resettable machines will be those in which an endomorphic

image is non-resettable. Here an endomorphism is a mapping from the set of states to

a proper subset of states such that the endomorphic image has a single 0 arrow and a

single 1 arrow and a single 1 arrow leaving each state. In Fig. 30(12), number 27 has

the following endomorphism: A---A, B-.B, C-'B. This is shown in Fig. 2. la Some

periodic machines are a special case of this class, since they have an endomorphic image

which is a closed circle of p states (a palindrome). A resettable machine with a resett-

able endomorphic image is shown in Fig. 2. 1 b. Examples of machines with no endo-

morphic images except the single state machine are Fig. 30(12) number 6 (resettable)

and Fig. 30(12) number 23 (non-resettable, a periodic circle). There are non-resettable

machines in which all endomorphic are resettable images, eg. Fig. 31(12)a.

The three causes of non-resettability given above account for all cases involving

two and three state machines, but examples of four and five state machines can be given

which are not periodic, not palindromes, and which have no non-resettable endomorphic

images. The first example is related to the uniformly composed codes given by Schritzen-

berger(16) as one of the classes of non-ergodic codes. A uniformly composed code can

be derived by replacing the symbols in a non-binary code by the binary words of unequal

length.
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A

ORIGINAL MACHINE ENDOMORPHIC IMAGE

(a) NON-RESETTABLE MACHINE (M2?)

A

(b) RESETTABLE MACHINE (M19)

Fig. 2.1 ENDOMORPHISMS

00

1 ENDOMORPHISM 1 ENDOMORPHISM

UNIFORMLY COMPOSED I 0[ Fig. 3,1"a] ]

CODEI

(AxXI,B=YI,CsX4,DOY4 ETC.)

0010)(aab)

RESETTABLE PERIODIC
NON-RESETTASLE

Ma MR TANDEM MACHINES

Fig.2.2 Uniformly Composed Code
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a a
a b
a c
b a
b b
b c
c a
c b
c c

with the replacement a= 0, b= 10, c = U. Even if the set of binary words is such that

the ternary letters can be identified, there will never be any way of knowing whether the

ternary letter is the first or last in one of the nine words above. The example given

in the coding report in Fig. 31(12) a can be derived from Sch~itzenberger' s example as

shown in Fig. 2. 2. The four state example can be derived more directly and shown in

Fig. 2. 3. It might be thought that non-resettability might arise in more complex ways

by hiding a non-resettable machine in a complex network of resettable machines, as in

Fig. 2. 4. This can be put in the form of Fig. 2. 3 by grouping the components if there

are no feedback loops, as shown by the dashed lines. If the input feeds the non-resett-

bble machine directly, as in Fig. 2. 5, there will be a non-resettable endomorphic image.

The type of non-resettability described above will be referred to as due to a Lomposite

machine having a non-resettable component.

A non-resettable machine which fits into none of the above four categories is shown

in Fig. 2. 6. The fact that this machine has a prime number of states does not rule out

its being a composite machine since a transient state is possible, but if it were compos-

ite there would be an endomorphic image. The machine of Fig. 2. 6 is an endomorphic

image of the machine of Fig. 2. 7, which is the decoder of the anagrammic code of

Schritzenberger (16):

000
0010
0011
01
100
1010
1011
110
111

This code is complete and has the prefix property both from the left and from the right.

Now Fig. 2. 6 can be obtained from Fig. 2. 8 by the coalescing procebs shown in Fig. 2. 9.

Here it is necessary to find a pair of states such as X1 and X2 whose 0 arrows go to the

same Y and whose 1 arrows go to the same state Z. Note that X. Y, a, b, c, d, e, need
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not be distinct from each other or from X1 and X2. The converse process of splitting

a state into two states can always be carried out. Now it is obvious that the property

of resettability is invariant to coalescing or splitting. To show this note that if a reset

sequence for state Y exists in Fig. 2. 9 on the right machine it also will reset the left

machine to Y, and conversely. If no such reset signal exists for one machine, none

exists for the other. A machine M' which can be obtained from a machine M by repeated

coalescings will be said to be a contracted form of M, and M will be said to be an ex-
panded form of Mi. A contracted machine is an endomorphic image, but not every

endomorphic image can be obtained by coalescing. Since Fig. 2. 6 is a contracted

form of the non-resettable Fig. 2. 8, it cannot be resettable. It remains to show that

Fig. 2. 8 is non-resettable. In Fig. 2. 10 a tandem connection of a binary resettable
machine and a ternary non-resettable machine (palindrome) is shown to be equivalent

to Fig. 2. 8.

There are several sufficient conditions for resettability which are known. For
example, the set of states marked Z1, Z2 , Z3 , Z4 in Fig. 2. 11 has the property that a

sequence of I's eventually makes the state Z4 . If all states are in such a set the graph

is naturally resettable. If a sequence of 0' s results in the only possible states being
in one of the Z s, then the graph is also resettable, and so forth.

The problem of resettability does not seem to have been treated in the literature

of finite state machines. Ginsburg describes some similar problems in his book(18)

but very strong assumptions are made concerning the existence of output signals from

the machine.

3.1 Testing for resettability The only algorithm which has been mentioned here for

determining whether or not a particular finite state machine is resettable or not is that

implicit in Eq. 2. 15, and this becomes an algorithm only when a bound is found for the

length of a reset signal. A non-algebraic algorithm will now be given which will pro-

vide such a bound, and which is very useful for visualizing the resetting process. Con-

sider n identical machines fed by the same input (where n is the number of states) but

each started in a different state. The composite machine will have a state diagram
which will show at a glance whether the original machine is resettable and what the

shortest reset signal is. The algorithm will be illustrated using the machine M13 of

Fig. 30(12) of the old report and Section 2. 3 above. Refer to Fig. 3. 1 and note that the

state IABC' might be thought of as either aA and B and CO (parallel machines) or as
eA or B or C (indicating complete uncertainty as to the state). After the input 'On

the state C becomes impossible and therfore, 1ABI results. The resulting composite

graph has n÷+ (n) + (n) + ... +I= 21 n I states, and the graph can be finished until

a 0 and a 1 arrow leave each state. The original graph will appear as part of the
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composite graph, those Isingle letterI states. If a path is found from the composite

state representing all states to any state of the original graph, then the graph is re-

settable. The shortest path gives the shortest reset signals. Since the machine is de-

terminate, there will be no path from a state with r letters to a state with more than r

letters, and in particular no arrows leave the original graph. In Fig. 3. 1 it can be

seen that the shortest reset signals are 01 and 11, and that the shortest signal which in-

sures state B is 010. Similarly, a signal which helps the machine continually in an un-

known state is 10000... . In Fig. 3. 2 in shown a graph which is not resettable, the

periodic machine M2 5. Palindromes have both arrows returning to the all-state node:

In a bounded delay machine (12), all sequences longer than a certain amount are resets.

It in now apparent that the longest path from the all-state to a single-state can have no

more than 2n - n - 1 symbols.

In Fig. 3. 2 it will be noticed that starting from ABC, a closed settAB, ACjis

reached. Every determinate connected machine will have one and only one such a closed

set which can be reached from the all-state. This closed set will have the following

properties:

1) all state labels have the same number of letters

2) every letter (original state) appears at least once in the closed set

Let the closed set have labels with X letters. If X = 1 the machine is resettable, if )X> 1

it is not resettable. If X = n the machine is a palindrome, as defined in Section 2. 3

above.

3. 2 Calculation of code a compression' The coding process which is to be considered

here is sometimes called 0 recodings: a sequence of discrete symbols from an informa-

tion source is decomposed into message words, these words are transformed into signal

words by the encoder and transmitted over the channel, the decoder decomposes the

sequence of signal words and transform then back to message words, and finally, the

message words are strung together to form the original source sequence. The ' com-

pression' achieved by the code is the ratio of the length of a source sequence to the

length of the corresponding channel sequence, provided that the same size alphabet is

used in each sequence. Since the ratio referred to depends on the length of the sequence

and on the particular words in the sequence, the definition must be made more explicit.

It is the purpose of this section to compare several formulas for calculating this
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compression. If the set of message words is fixed and their occurrence statistically
independent, Huffman(17) has shown how to maximize the compression ly properly

chosing the channel words. If the whole recoding process is considered there will not

generally be a single most efficient code because the longer the words (and the more

of them there are) the more compression will be achieved. There may be, however, a

maximum compression for codes of a given I complexity". The complexity of a code
should be defined in terms of the size of the apparatus required to encode and decode

it, and an exact method for calculating complexity necessarily involves a method of

sequential apparatus synthesis.

The amount of compression achieved by a code depends not only on the code, but
on the information source. The sources to be considered here will be finite Markov

processes with fixed transition probabilities. The encoder does not know the internal

states of the source during the process, but there is a binary word associated with each

state transition and this is fed to the encoder. The source can be assumed to be in the

following standard form without loss of generality: There are m internal states S1 , S2 ,
.. S m. From each state there are exactly two transitions possible, one generating a

0 and the other a 1 to be fed the encoder. These two transitions can be represented by

arrows in the state diagram used to visualize the process; an arrow leaving one state can
either go to another state or return to the same state. Let Pij be the probability of the

i'th state being next if the present state is S , and let r . (k = 0, 1) be the probability of

the symbol k being generated by the source if it is presently in state Sj. It follows that

Pij is either zero, equal to one of the rkj, or equal to unity. It will be assumed that
the source is ergodic(15) so that a unique set of state probabilities Pi exists satisfying

m

Z Pij P = Pi i= 1, 2... m (3.1)
J=l

The encoding process will be described by a finite state transducer having states R1 ,

R2 , ... Rn" Again two arrows will leave each state, one for a 0 symbol from the
source and the other for 1. Associated with each arrow is either a channel word of

finite length, or no word. The combination of source and encoder can now be regarded

asaa Markov process with mn states SRj. The transition probabillties of the combina-
tion process will be denoted by qj , and the state probabilities Qi will satisfy

rnn

S j .QI ia 1., 2,... mn (3.2)
j=l
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Theq will be either zero. or equal to one of the pij. or unity. The combination pro-

cess may not be ergodic, so that there may be several solutions for Q. There will also

be a set of probabilities tkj(k a 0, 1) representing the probability that the channel word

corresponding to symbol k being fed to the composite process while in state j will be
generated. Again, qij can be zero, equal to one of the tkj, or unity. If the channel

word which is generated when k is fed to the encoder has Ikj symbols, then the expected

length of a channel word for a single state transition of the composite process is

mn IL E Qi E j.9k (3.3
i=l k=O

provided that the Qi are uniquely determined by Eq. 3. 2. The compression C is the

reciprocal of L, since every state transition in the composite process corresponds to

a single symbol from the source.

The method of calculation will be illustrated by encoding a ' woodcut source'

with the code

00 -. 0

01-.-o10
1 "-"11

A I woodcut source will be defined as a binary source in which the probability of a 0

is 1- P if the preceding symbol was I and I-a if the preceding symbols was 0, and in

which the probability of a I is a if the preceding symbol was 0, and in which the proba-

bility of a I is a if the preceding symbol was 0 and P if the preceding symbol was 0. This

source, the code, and the composite process are illustrated in Fig. 3. 3. If a and1- P

are small this source will generate long strings of 0' s and 1' s, and this is characteristic

of a scanned block srawing or woodcut. If a = P this is the usual binary source with

independent symbols. Outputs from either source or encoder are shown in parenthesis

The stationary probabilities of the composite process must satisfy

1-P 0 1-a. 0 Q2 Q 2V0 1- 0 1-P Q3 Q3
0 0 0 0 - 4 - 9

4

The unique solution. with the constraint Z a = I, is

i=l
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Q~ +i

(2 -a) (I + a-
!

03| (1- 0 C) 0 - 0)
(2 -s) (I+ -a )

0.4 0

Note that S R2 is a transient state which can never be reoccupied. and therefore Q4 0.

The average length L can now be calculated from Eq. 3. 3 as

1 - L I+ 3a - 2c + C-P (3.4)

C (2-c) (1 + a-)

A different result is obtained if the expected length of the output word is divided by the

expected length of the input word:

w

Zi p(r) yr

L = rul (3.5)
w

Z p(r) xr

r=l

where p(r) is the probability of word r in the code table, yr is the length of the rIth out-

put word, x the length of the r Ith input word, and w the number of words. In the pre-

sent example, the probability of being in S, is - and the probability of being in

S2 is I+j'-is therefore:

-- l+•-pl+ci-I

(1 - CL) (1 -0)

p(2) -Pr (0i) IL ( L
- " ~ l+a-
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p(3) =Pr {l} = L

I1+ CL -

L = ( + a) (-) + 2a (3.6)

2(1 - P) + a

This is not the same as L. This shown, among other things, that Huffman' a method

for deciding on the channel word set will not give the most efficient code even if the

source word set is kept fixed. The reason is that the occurrence of various source

words are not statistically independent events. Smallness of the LI is not an indication

of the codes efficientcy unless the words occur independently.

Conclusions and Program for Next Interval

It is expected that the methods for analyzing Turing machines and computers can

be used to lead to more definite conclusions as the the efficiency of realizing logical

functions with sequenctial machines. The four state machines will be tabulated and

classified according to their properties. An attempt will be made to derive necessary
and sufficient conditions for resettability by extending the classes of non-resettable

machines considered above.
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